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A Job Search Duration and Wage Dispersion
Our paper has explored a new two factor undiscounted search model. We now show
that dispersion still predicts search duration with discounting, albeit with a subtle
change. We consider McCall’s classic discounted job search model. The big picture is
that discounting adds another opportunity cost of search, and greater wage dispersion
can lower or raise this cost, and so job search duration can rise or fall.

Call FB more log-dispersed than FA if log(F−1
B ) is weakly steeper than log(F−1

A ).41

These orders typically agree: Table 2 gives examples of several parametric distribu-
tions easily ordered by both dispersion and log-dispersion.

Consider a generalized job search model with discount factor β ≤ 1 and search
cost c > 0. Assume wages have density f = F ′ on (0, b), for b ≤ ∞. The reservation
wage w̄(c) obeys

(1− β)w̄(c) = −c+ β

∫ ∞

w̄(c)

[1− F (w)]dw. (62)

We now enrich the comparative static of Theorem 3 for payoff discounting.

Proposition 1 Suppose the wage distribution on [0,∞) changes from FA to FB,
which is more dispersed. Let Si(c) ≡ 1−Fi(w̄i(c)) be the stopping chance for i = A,B.

(a) If β = 1, search duration rises in dispersion. If β < 1, it rises at high search
costs, and falls at low search costs: SB(c)<SA(c) iff c > c̄ for some threshold c̄.

41 If FB is more log-dispersed than FA and has a higher lower support, then FB is more dispersed.
For if F−1

B (a) ≥ F−1
A (a) at some a, then ∂F−1

B (a)/∂a > ∂F−1
A (a)/∂a by log-dispersion. So if

F−1
B (0) ≥ F−1

A (0), then F−1
B (a) ≥ F−1

A (a) at all a ∈ (0, 1), and ∂F−1
B (a)/∂a > ∂F−1

A (a)/∂a at all
a ∈ (0, 1).
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Distribution cdf Support Dispersed and log-dispersed if
Exponential 1− eλz [0,∞) λ ↑
Gamma 1

Γ(k)γ(k, z/θ) [0,∞) θ ↑
Log-normal 1

2 +
1
2erf

(
log(z)−µ

σ
√
2

)
[0,∞) µ ↑

Type-2 Gumbel e−bz−a
[0,∞) (i)a ↓ and z > e−b or (ii)b ↑

Pareto distribution 1− (1 + λz)1/λ [0,∞) λ ↑
Uniform (z − a)/(b− a) [a, b] (i)a ↓ or (ii)b ↑

Table 2: Dispersion and Log-dispersion of Probability Distributions.

(b) Search duration rises in log-dispersion.

Proposition 1 implies Theorem 3 with no discounting: With discounting, search du-
ration rises in dispersion for high search costs, and rises for all search costs given
log-dispersion. We depict Proposition 1 with numerical examples in Figure 12.42

Example. Assume net wages W = ξY −∆, where wage Y > 0 has cdf G, ξ > 0

scales Y , and ∆ > 0 is the disutility of work. Changing variables w = ξy−∆ in (62)
yields

(1− β)ȳ = −
[
c−∆(1− β)

ξ

]
+ β

∫ ∞

ȳ

[1−G(y)]dy. (63)

Notice how greater wage dispersion ξ has a similar effect as lower search disutility ∆ —
i.e., it lowers the (bracketed) search cost and spurs search, reducing search duration.

This logic holds if c ≥ ∆(1 − β) — so that search is costly. Once c < ∆(1 − β),
the worker profits from search, and these profits fall in ξ, reducing search duration.

In this example, log-dispersion falls in ξ. For if a = G(y), and w = ξG−1(a)−∆ >

0:
∂ log[F−1(a)]

∂a
=
∂ log[ξG−1(a)−∆]

∂a
=

1

g[G−1(a)][G−1(a)−∆/ξ]
.

As ξ rises, both g[G−1(a)] and G−1(a) are fixed, and the right side falls. Thus, log-
dispersion falls. In this case, Proposition 1 (a) holds, but part (b) does not.

Consider how convex transformations of a r.v. impact dispersion and log-dispersion:

Lemma 6 If φ is an increasing convex function with φ(0) ≥ 0 and φ′(0) ≥ 1, then
Y ≡ φ(X) is more dispersed and log-dispersed than random variable X > 0.

42 In the right panel, W1 ∼ U [0, 1] and W2 = φ(W1, 1.5) where φ(x, t) = x + xt/t. In the left
panel, W1 = φ(U, 2.5) and W2 = φ(U, 0.3), where U is uniform [0, 1]. In the left panel, W2 is more
dispersed and less log-dispersed than W1. In both panels, the discount factor is β = 0.9.
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Figure 12: Dispersion and Duration in the Job Search Model (Proposi-
tion 1). We plot stopping chances SA and SB as a function of search cost c, with
prize distribution FB more disperse than FA. At left, the wage distribution FB is also
more log-dispersed than FA, and has a stopping chance at all c > 0. At right, FB is
not more log-dispersed than FA, and stopping chance is higher for the more dispersed
at low search costs c.

So scaling wages lifts search duration since φ(x) = ξx obeys Lemma 6 if ξ>1.

Proof of Lemma 6. The quantile function of Y is φ(F−1(a)), with slope φ′(F−1(a))

times ∂F−1(a)/∂a. If φ′ > 1, it is steeper than F−1(a), and Y is more dispersed.
Next, by φ′(0) > 0 and the convexity of φ, we have φ′(x)/φ(x) ≥ 1/x at all x > 0.

That Y is more log-dispersed than X follows from:

∂

∂a
log[φ(F−1(a))] =

φ′(F−1(a))

φ(F−1(a))

∂F−1(a)

∂a
≥ 1

F−1(a)

∂F−1(a)

∂a
=

∂

∂a
log[F−1(a)] !

Proof of Proposition 1 (a): From (62), w̄′
i(c) = −[1 − β + β(1 − Fi(w̄i(c)))]−1.

Then
∂Si(c)

∂c
=
∂[1− Fi(w̄(c))]

∂c
=

fi(w̄(c))

1− β + β[1− Fi(w̄i(c))]
.

by the chain rule. If c = Ci(s) is the inverse function of s = Si(c), then

∂Ci(s)
∂s

=

(
∂Si(c)

∂c

)−1

=
1− β + βSi(c)

fi[F
−1
i (1− Si(c))]

, (64)

Since ∂F−1(a)/∂a= 1/f [F−1(a)] rises in the dispersion of F , so does ∂C(s)/∂s. So
SB(c)−SA(c) is downcrossing: it has at most one sign change from + to − as c rises.

Assume undiscounted search. As c → 0, Sam never stops searching: S → 0, or
SA and SB cross at 0. As SA(c) and SB(c) downcross, SB(c)<SA(c) for all c > 0.
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Proof of Proposition 1 (b): As in (11), we can rewrite (62) as Γ(Fi,Si(c)) = 0

where

Γ(Fi,Si(c)) ≡ −(1− β)F−1
i (1− Si(c))− c+ β

∫ 1

1−Si(c)

(1− α)
∂F−1

i (α)

∂α
dα. (65)

A unique zero Si(c) exists, since the right side rises in Si(c). We claim SA(c)<SB(c).

For simplicity, write sA = SA(c) = 1−FA(w̄A(c)) and sB = SB(c) = 1−FB(w̄B(c)).

Case 1: Assume F−1
B (1−sA)≤F−1

A (1−sA). Change FA to FB at Si(c)=sA. By this
case’s premise, the first term on the right side of (65) rises. Since F−1

B is steeper than
F−1
A , the right side integral in (65) rises shifting from FA to FB at Si(c) = sA. Then

Γ(FB, sA) ≥ Γ(FA, sA) = 0 = Γ(FB, sB). As Γ(FB, s) rises in s, we have sB ≤ sA.

Case 2: Assume F−1
B (1− sA) > F−1

A (1− sA). First, rewrite (65) as:

Γ(Fi, si)

F−1
i (1− si)

= −(1− β)− c

F−1
i (1− si)

+ β

∫ 1

1−si

(1− α)
∂F−1

i (α)/∂α

F−1
i (α)

F−1
i (α)

F−1
i (1− si)

dα

Change FA to FB. By the premise of this case, the second term on the RHS rises.
First, [∂F−1

i (α)/∂α]/F−1
i (α) in the integral also increases, because log(F−1

B ) is steeper
than log(F−1

A ). Similarly, F−1
i (α)/F−1

i (1− si) rises at each si = sA:

log

[
F−1
i (α)

F−1
i (1− si)

]
= log[F−1

i (α)]− log[F−1
i (1− si)] =

∫ α

1−si

∂ log[F−1
i (x)]

∂x
dx

The integrand rises pointwise as log(F−1
B ) is steeper than log(F−1

A ). Finally, as in
Case 1, from Γ(FB, sA) ≥ 0, we conclude sB ≤ sA. !
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B Mean-Preserving Spread: Search Can End Faster
Assume −Z is Pareto with shape parameter γ > 1 and Z has support (−∞, z̄] with
z̄ < 0. By the definition of the Pareto distribution the cdf of Z is H(z) = (z̄/z)γ

and its mean is given by E[Z] = γz̄/(γ − 1). We restrict E[Z] = −1 by setting
z̄ = −1 + 1/γ. Then the cdf becomes H(z) = [(−1 + 1/γ)/z]γ and its support is
(−∞,−1 + 1/γ]. The density h and cdf H are both log-convex in this example.

Near γ=1, if γ falls, then Claim 23 implies that Z incurs a MPS, while Claim 24
asserts that the stopping chance rises (i.e. search duration falls).

Claim 23 If γ falls, then Z has a MPS, but Z does not grow more disperse if γ < 2.

Proof: Let γB > γA > 1. For b ∈ (0, 1) and a = A,B, the quantile function is
H−1

a (b) = −b−1/γa(1−γa)/γa. Since the means of HA and HB are −1 by construction,
if H−1

A (b)−H−1
B (b) is single-crossing, then HA is a MPS of HB, by ?. Since H−1

A (b)−
H−1

B (b) = H−1
A (b)

[
1−H−1

B (b)/H−1
A (b)

]
, and H−1

A (b) < 0, it suffices to show

H−1
B (b)

H−1
A (b)

=
γA(γB − 1)

γB(γA − 1)
b

1
γA

− 1
γB

rises in b — which holds, as γB > γA > 1. So HA is a mean-preserving spread of HB.
Next consider the change in the slope of the quantile function with respect to γ

d

dγ

[
dH−1(b)

db

]
=

d

dγ

[
γ − 1

γ2b1/γ+1

]
=

γ − 1

γ2b1/γ+1

[
2− γ

γ(γ − 1)
+

1

γ2
log(b)

]
(66)

Since log(b) ∈ (−∞, 0), for γ ∈ (1, 2), expression (66) is positive iff b is large enough.
So H−1(b) does not flatten for all b ∈ (0, 1) as γ rises: Dispersion needn’t rise in γ. !

Claim 24 (Rising γ) If c > 0, then 1−H(ζ(c)) falls in γ iff γ < γ∗, for γ∗ > 1.

Proof: If H(z) = [(−1 + 1/γ)/z]γ, the Bellman equation (3) becomes

(c+ 1)γH(ζ)1/γ − γ + 1−H(ζ) = 0. (67)

A unique solution, say Hγ(ζ) exists, as the LHS rises in H(ζ), is negative if H(ζ) = 0,
and positive if H(ζ) = 1. Differentiating (67) in γ, we have dHγ(ζ)/dγ ≥ 0 iff
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Hγ(ζ)
1/γ[1− log(Hγ(ζ)

1/γ)] ≤ 1

c+ 1
. (68)

We claim inequality (68) is strict iff γ < γ∗, for γ∗ > 1. Now, (68) is strict for γ
near 1, since x[1 − log(x)] ↓ 0 as x ↓ 0, and H(ζ) ↓ 0 as γ ↓ 1 by (67). Once γ > 1,
if (68) binds at some γ∗, then (68) is strict and dHγ(ζ)/dγ > 0 for γ < γ∗, and
dHγ(ζ)/dγ = 0 at γ = γ∗. But then Hγ(ζ)1/γ rises in γ at γ = γ∗, and so (68) rises in
γ at γ = γ∗. So, (68) fails for all γ > γ∗, proving that dHγ(ζ)/dγ > 0 iff γ < γ∗. !
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C Necessity of the Dispersive Order
The dispersive order is sufficient but not necessary for search duration to increase.
Indeed, as shown in the left side of (11), the stopping chance depends on the slope of
the quantile function at all quantiles above 1−S(c). Hence search duration might in-
crease even if the quantile function becomes flatter in some regions. Now we explain
under what conditions will the dispersive order become necessary. When making
decision from experience, individuals sometimes underweight the probability of rare
events, see Barron and Erev (2003) and Hertwig et al. (2004) for experimental evi-
dence. Consider a searcher who ignores the extreme realizations of Z. Specifically,
for some 0 ≤ β < α ≤ 1, Sam thinks all offers above quantile α or below quantile
β are impossible, i.e. the search thinks the distribution is [H(z) − b]/(a − b) for
z ∈ [H−1(β), H−1(α)]. When drawing any z < H−1(β) or z > H−1(α), Sam thinks
it is a measure zero event. A searcher that neglects rare events is characterized by a
pair of quantiles and a search cost, i.e. (α, β, c).

Theorem 11 Search duration rises for all searchers that neglect rare events if and
only if prize dispersion rises.

Proof: If the hidden factor distribution changes from H1 to H2, we argue that search
duration rises for any (α, β, c) iff H2 is more dispersed than H1.

Dispersion =⇒ Longer duration: For j = 1, 2 let Ĥj be the distribution of
offers that Sam perceives. The corresponding quantile function satisfies Ĥ−1

j (a) =

H−1
j [a(α− β) + β]. Hence Ĥ2 is more dispersive than Ĥ1 when H2 is more dispersive

than H1. By Theorem 3, search duration is higher under H2.
Longer duration =⇒ Dispersion: Suppose H−1

2 is flatter than H−1
1 for some open

interval (d1, d2). Consider a searcher who has β = 0 and α = d2. Then (11) becomes

c =

∫ 1

Ĥi(ζ̂i)

(1− a)
∂Ĥ−1

i (a)

∂a
da =

∫ d2

Ĥi(ζ̂i)(α−β)+β

(
1− s− β

α− β

)
∂H−1

i (s)

∂α
ds

where the right side changes variable s = a(α−β)+β. For sufficiently small c, Sam’s
continuation chance Ĥi(ζ̂i)(α − β) + β ∈ (d1, d2) for i = 1, 2. Since H−1

2 (s) is flatter
than H−1

1 (s) for s ∈ (d1, d2), Ĥ2(ζ̂2) < Ĥ1(ζ̂1) and so search duration is lower under
H2. !
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D Quitting and Dispersion
More dispersion of the hidden factor accelerates quitting iff the quit payoff is low:

Theorem 12 (Quitting Chance) If the hidden factor Z dispersion rises, then q

rises iff u < ū, some ū ∈ R∪±∞. If it is a mean preserving dispersion, then |ū| < ∞.

For a quick intuition, assume just one inside option (X ,Z). Sam quits if X +

min(Z, ζ(c))≤u; so he doesn’t participate (X+ζ(c)≤u) or declines the inside option
(X +Z <u). For a mean preserving dispersion of Z, the lower Z quantiles fall and
ζ(c) rises. So P (X+min(Z, ζ(c))≤u) rises for small u and falls for large u.

After a mean preserving dispersion, the quitting chance rises for low fallbacks,
and otherwise falls (Theorem 12). This speaks to classic search: For product search
— where one buys for all prices, as ū ≪ 0 — dispersion leads one to quit. For job
search — the second case, as one might not take a job — dispersion deters quitting.
Proof of Theorem 12: Let ZB be a mean preserving dispersion of ZA, with
respective cdfs HB and HA. The quitting chance is qa = πa(u−ζ(c), c)N , for a = A,B

by (43). It suffices that qB=πB(u− ζB(c), c)"πA(u− ζA(c), c)=qA as u ≶ ū, some ū.
Let Ha be the cdf of min{Za, ζa(c)}, for a = A,B. Posit ζB(c) ≥ ζA(c). If

z < ζA(c), then HB(z) −HA(z) = HB(z) −HA(z). This is downcrossing (crosses at
most once from + to −), since H−1

B is steeper than H−1
A . Likewise, HB(z)−HA(z) =

HB(z) − 1 ≤ 0 for z ∈ [ζA(c), ζB(c)), and HB(z) − HA(z) = 0 for z > ζB(c). So
HB −HA is downcrossing in this case. Lastly, we similarly deduce that HB −HA is
downcrossing when ζB(c) ≤ ζA(c).

We can rewrite π(u− ζ(c), c) ≡ P (min(Z, ζ(c)) ≤ u− X ) as:

π(u− ζ(c), c) =
∫∞
−∞ P ({min(Z, ζ(c)) ≤ s}∩ {s = u−X})ds =

∫∞
−∞ Ha(s)g(u− s)ds.

Since HB(s) − HA(s) is downcrossing, so is πB(u − ζB(c), c) − πA(u − ζA(c), c) =
∫∞
−∞[HB(s)−HA(s)]g(u− s)ds, as g is a log-concave pdf (Karlin and Rubin, 1955).

Integrating (3) by parts, ζa(c) = −c + E[Z] +
∫ ζa(c)

−∞ Ha(z)dz. Assume a mean
preserving dispersion of Z. It is also a MPS:

∫ a

−∞ H(z)dz rises, and so ζB(c) > ζA(c).43

We can rule out πA(u−ζA(c), c) > πB(u−ζB(c), c) for all u. It is because πa(u−ζa(c), c)
43When Z has full support, integration by parts requires limz→−∞ zH(z) < ∞. By l’Hopital’s
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is the cdf of X+min{Za, ζa(c)}, we rule out X+min{ZB, ζB(c)} ≻ X+min{ZA, ζA(c)}
stochastically. This contradicts E[X +min{ZB, ζB(c)}] =E[X +min{ZA, ζA(c)}], as
E[ZB]=E[ZA] and:

E[min{Za, ζa(c)}]− E[Za] =
∫∞
ζn(c)

(ζa(c)− z)dHa(z) =
∫∞
ζa(c)

[1−Ha(z)]dz = c

by (3). Altogether, πB(u− ζB(c), c)− πA(u− ζA(c), c) is downcrossing in u. !

rule, limz→−∞ zH(z) = limz→−∞ −z2h(z). These limits vanish, for otherwise the second moment∫∞
−∞ z2h(z)dz is infinite — impossible, as log-concave densities have finite moments (An, 1997).
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E Conditional Recall Chance
In stationary search models, recall never happens and in our two-factor model the
recall chance is positive (Lemma 3). One might intuit that the recall chance increases
in the gaps between known factors, because the benefits of continuing to search drop
more rapidly. Consider two extreme cases: with identical known factors, search is
stationary and Sam never recalls before the last stage. But as the gap size explodes,
Sam stops immediately, and so never recalls.

For some intuition, proceed conditional on reaching a period. Let rn be Sam’s
recall chance at stage n, with 1 < n < N , after he sees all realized known factors, but
before he starts searching. Assume no outside option. Sam recalls at stage n if (i) he
hits that stage, and (ii) some prior option dominates both it and (iii) dominates the
expected value of exploring option n+ 1. So his stage n recall chance is

rn=P (xi+Zi < xn+ζ for all i<n, xj+Zj>max{xn+Zn, xn+1+ζ} for some j<n)

Also let sn be Sam’s chance of exploring option n, namely

sn = P (xi + Zi < xn + ζ for all i < n).

We make the following claim:

Claim 25 The conditional recall chance rn/sn monotonically rises if all prior gaps
xi − xi+1, for i ≤ n, weakly increase.

Figure 13 illustrates this claim for n = 2. The chances r2 and s2 are the respective
probability measures of the blue shaded area, and the red and blue areas. If the
hidden factors Z1 and Z2 are uniformly distributed (which is log-concave), then rn

and sn are proportional to the size of these shaded areas. In this example, an increase
in x1− x2 shifts the blue region left, but does not affect its measure. Since the chance
s2 of reaching stage 2 falls, the ratio r2/s2 rises.

We now prove Claim 25. Given the realized known factors, the chance P (xi+Zi <

10



✻

✲

Explore option 2

Recall
option 1

x1 + z1 = x2 + z2

x1−x2

z2

ζ−(x1−x3) ζ−(x1−x2) z1

✻

✲

Explore option 2

Recall
option 1

x1 + z1 = x2 + z2

x1−x2

z2

ζ−(x1−x3) ζ−(x1−x2) z1
Figure 13: Conditional recall chance. The blue shaded area is the event of
recalling option 1 at stage 2. Sam hits stage 2 in the red and blue shaded area event.
The known factor gap x1 − x2 is larger in the right panel. With a uniform probability
measure, the probability r2 is unchanged while s2 falls. So the conditional recall
chance r2/s2 rises.

y for all i < n) equals Πn−1
i=1 H(y − xi). Hence,

rn =

∫ xn+ζ

xn+1+ζ

H(y−xn)dΠn−1
i=1 H(y−xi) =

∫ 0

−(xn−xn+1)

H(ζ+w)dΠn−1
i=1 H(w+ζ−(xi−xn))

where the dummy y = w + (xn + ζ) represents the realized value of the best option
from 1 to n− 1. Next, Sam’s survival chance can be likewise written as:

sn = P (xi + Zi < xn + ζ for all i < n) = Πn−1
i=1 H(ζ − (xi − xn)).

Define the cdf J on (−∞, 0]:

J(w) ≡ Πn−1
i=1 H(w + ζ − (xi − xn))
Πn−1

i=1 H(ζ − (xi − xn))

Fix i ≤ n. As H is log-concave, J(w) falls as xi−xi+1 rises, fixing other gaps xj−xj+1.
The conditional recall chance rn/sn =

∫ 0

−(xn−xn+1)
H(ζ +w)dJ(w) rises in xi − xi+1. !
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F Is Web Search Really Sequential?
Our model exhibits a known property of search and learning models, that encouraging
search outcomes need not reduce search duration. Rosenfield and Shapiro (1981)
showed that one need not even employ a cut-off strategy — for expectations rise after
high draws. When W1 is larger, so too are X1, . . . ,Xn, and expected search duration
rises. Our log-concavity assumptions help ensure the optimality of our threshold rule.

So inspired, we econometrically test our model. Intuitively, better earlier outcomes
shorten the search process. But this need not be so. Assume that search lasts T ≥ 1

stages, and the first web site has payoff W1 = X1 +Z1. Consider the OLS regression
T = β0 + β1W1 + ϵ on data generated from our model. We claim that — fixing the
CTR σ1 = 1 − G(u − ζ(c))n — the true coefficient obeys β1 > 0, provided the quit
payoff u is large enough and search cost c small enough. By Lemmas 1 and 2, Sam
clicks at stage i if Xi + ζ(c) > Ωi = max(u, w1, w2, . . . , wi). In the limit u → ∞ and
c → 0, and so ζ(c) → ∞, the stage i search decision depends only on the known
factor, clicking if Xi > u − ζ(c) = ℓ̄. As W1 = X1 + Z1 is correlated with X2, one
clicks the second web site more often with higher W1 (Claim 26 (a)) — i.e. β1 > 0.

In fact, search duration is not monotone in the first search outcome even ignoring
its known factor. For consider the OLS regression T = β0 + β2Z1 + ϵ. The absolute
true coefficient |β2| vanishes as u → ∞ and c → 0, fixing the CTR (Claim 26 (b)).
This follows once more because the clicking decision depends on Xi but not Zi for
large u, very small c, but with u− ζ(c) fixed. So T and Z1 are uncorrelated.

Claim 26 Posit limit (⋆): the quit payoff u explodes (u ↑ ∞), and the clicking cost
vanishes (c ↓ 0) but the CTR holds constant. Then (a) the limit coefficient β1 is
positive, and (b) the coefficient β2 tends to 0.

De Los Santos et al. (2012) (DHW) studies an online book market and test three
sine qua non predictions of sequential search models. In their most relevant “test 3”,
DHW consider an OLS regression T = β0 + β3P1 + ϵ of the number of searches T on
the price discount P1 at the first store. They assume that price discounts are learned
after visiting the store,44 and suggest that Weitzman’s model requires β3 < 0. For a

44DHW posit that consumer i’s payoff from buying at store j is uij = δij + αipj . Consumer i
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higher first price discount intuitively leads Sam to stop more often. Finding that β3
is not statistically different from 0, DHW reject Weitzman’s model.

But this logic misses selection effects. For a price learned after a store visit is best
modeled as a hidden factor: Z1 = P1. As our second regression shows, Weitzman’s
model yields a statistically insignificant coefficient β3 on the hidden factor for a large
quit payoff u and search cost c small relative to rewards — a plausible limit in their
context.45 But if Sam learns about the price discount P1 before searching, then
P1 = X1 +Z1, where Sam sees the known factor X1. In this case, our first regression
shows that even β3 > 0 is consistent with Weitzman’s model when u is large and c is
small. So really any sign of β3 is consistent with Weitzman’s model.

While DHW use data for cases when users purchase from a web site after searching,
our regressions condition on participation. We study the regression T = β0+β3P1+ ϵ

given a final purchase. Venturing the extreme case when P1 = X1, we show that if
the hidden factor density has a thin tail, then β3 ≥ 0 as u → ∞ and c → 0, contrary
to the DHW conjecture: Higher price discounts do not shorten search.

Claim 27 If h(z) has a thin tail, then β3 has a non-negative limit given (⋆).

We also illustrate the insight of Claim 27 numerically. We generate simulated
data using our calibrated model (§H) and then run regressions based on it. The
parameter values are given by Table 4 and following DHW the fraction of consumers
that are aware of one, two, three and four bookstores are 0.35, 0.34, 0.23 and 0.08,
respectively. We generate 20,000 web searches and approximately 7700 searches ended
with a purchase. The expected number of search is 1.45 and it is 1.54 conditional
on purchase. We consider three regression specifications: (1) Regress T on X1, (2)
regress T on Z1, and (3) regress T on W1 ≡ X1+Z1. The results are reported in Table
3. The point is that search duration is positively correlated with the realization of the
first known factor and negatively correlated with the first hidden factor. Depending
knows his gross utility δij before searching store j, and learns the price discount pj after visiting
store j. In our model, δij is the known factor and the price discount pj is the hidden factor.

45For in DHW’s data, about 5% of visits to online bookstores result in a transaction (15561
transactions from 327074 searches). Since DHW suggest less than 2 visits per search, the success
chance is less than 10%; equivalently, the quitting chance is high, exceeding 90%. This in turn implies
that consumers’ quit payoffs u must be high relative to the size of the rewards. That consumers
search despite such a low success chance implies a small search cost c > 0.
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on whether price discount is observable before or after search, the correlation between
T and P1 can be of any sign under sequential search.

Table 3: Regression results

Full sample Specification

Variable: (1) (2) (3)
First known factor 0.86∗∗∗

First hidden factor −0.21∗∗∗

First option payoff −0.05∗∗∗

Intercept −1.14∗∗∗ 1.45∗∗∗ 1.46∗∗∗

Conditional on purchase

Variable: (1) (2) (3)
First known factor 0.21∗∗∗

First hidden factor −0.50∗∗∗

First option payoff −0.48∗∗∗

Intercept 1.45∗∗∗ 1.87∗∗∗ 2.06∗∗∗

Note: ∗∗∗p<0.01

Proof of Claim 26 (a): Let C be the click-through event X1 > u− ζ(c) or T ≥ 1,
by (14). The OLS sample estimate of β1 is β̂1 = Cove(T,W1| C)/Vare(W1| C), where
Cove(T,W1| C) and Vare(W1| C) are the sample covariance and variance given C .
Then β̂1 converges in probability to β1=Cov(W1, T | C)/Var(W1| C) as N ↑ ∞.

Since the cdf of X1 is P (X1 ≤ x1) = G(x1)N , the conditional expectation

E[W1| C ] =
∫∞
u−ζ(c)

∫∞
−∞(x1 + z1)dH(z1)dG(x1)N/[1−G(u− ζ(c))N ]

is constant as u → ∞, c ↓ 0, fixing u − ζ(c) = ℓ̄ (limit (⋆)). Similarly, since
Var(W1| C) = E[W 2

1 | C ] − E[W1| C ]2, the limit variance only depends on ℓ̄. So
the sign of β1 in this limit depends on Cov(W1, T | C) > 0. Let t(x1, z1, u, c) be the
expected number of searches when the user clicks through if X1=x1 and Z1=z1. Then
Cov(W1, T | C)=Cov(W1, t(X1,Z1, u, c)| C). We derive a formula for t(x1, z1, u, c).

Assume X1 = x1 and Z1 = z1. By Lemmas 1 and 2, the user enters stage n iff
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Xn + ζ(c) > Ωn = max(u, w1, w2, . . . , wn). In the limit u → ∞ and c → 0, and so
ζ(c) → ∞, the condition becomes Xn > u − ζ(c) = ℓ̄. By the Markov property of
order statistics (footnote 15), the distribution of the known factors of the remaining
N − 1 web sites is the same as N − 1 i.i.d. draws from cdf G(x )/G(x1) for x < x1. So
in limit limit (⋆), a randomly selected option in the subgame is clicked iff its known
factor exceeds ℓ̄, which occurs with chance [1−G(ℓ̄)/G(x1)]. Since each of the N − 1

options is independently clicked with chance [1− G(ℓ̄)/G(x1)], the expected number
of searches in the limit u → ∞, c → 0 is (N − 1)[1−G(ℓ̄)/G(x1)]. Fixing ℓ̄,

lim
c→0,u→∞

t(x1, z1, u, c) = 1 + (N − 1)[1−G(ℓ̄)/G(x1)] ≡ t̄(x1). (69)

Altogether, Cov(W1, T | C) → Cov(X1 + Z1, t̄(X1)| C) at the limit. Since X1 is
independent of Z1 even given C , Cov(X1 + Z1, t̄(X1)| C) = Cov(X1, t̄(X1)| C).
Finally, Cov(X1, t̄(X1)| C) > 0 as t̄(x1) strictly rises in x1 by (69). Altogether, the
coefficient β1 = Cov(W1, T | C)/Var(W1| C) > 0 as u → ∞ and c → 0. !
Proof of Claim 26 (b): As N explodes, the OLS estimate β̂2 tends in probability
to Cov(T,Z1| C)/Var(Z1| C). As X and Z factors are independent, the conditional
expectation of Z1 has cdf H under C . All told, Var(Z1| C)=Var(Z)>0 as N→∞.

If (X1,Z1) = (x1, z1), then the limit t̄(X1) of expected search times t(x1, z1, u, c) as
u→∞ and c→0 is constant in z1, by (69). As t(x1, z1, u, c) ≤ N − 1, the Dominated
Convergence Theorem implies that Cov(t(X1,Z1, u, c),Z1| C) → Cov(t̄(X1),Z1| C).
So β2 → Cov(t̄(X1),Z1| C)/Var(Z) = 0, as X1 and Z1 are independent on C . !
Proof of Claim 27: Let P be the event that the user eventually purchases. By
OLS,

β3 = Cov(T,X1| P )/Var(X1| P ),

where Cov(T,X1| P ) and Var(X1| P ) are the covariance and variance. Then β3 is
non-negative provided Cov(T,X1| P ) ≥ 0 in the limit (⋆).

The user clicks through if he buys, and buys if he clicks through and X1 +Z1>u.
So P ({X1+Z1 > u}∩{ P}) = P ({X1+Z1 > u}∩{ C}) =

∫∞
ℓ̄ [1−H(u−x1)]dG(x1)N .
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Since P ( P ) = 1− q = 1− π(u− ζ(c), c)N by (43), Bayes rule gives:

P (X1+Z1 > u| P ) =

∫∞
ℓ̄ [1−H(u− x1)]dG(x1)N

1− π(ℓ̄, c)N
=

∫ ∞

0

[
1−H(ζ(c)− s)

1− π(ℓ̄, c)N

]
dG(s+ℓ̄)N .

The limit as ζ(c) → ∞ as c → 0 of the bracketed term in the integrand is

lim
ζ(c)→∞

1−H(ζ(c)− s)

1− [
∫∞
0 g(ℓ̄+ r)H (ζ(c)− r) ds+G(ℓ̄)]N

= lim
ζ(c)→∞

h(ζ(c)− s)

N
∫∞
0 g(ℓ̄+ r)h (ζ(c)− r) dr

by l’Hopital’s rule, since limζ(c)→∞[
∫∞
0 g(ℓ̄+r)H (ζ(c)− r) ds+G(ℓ̄)] = 1. In limit (⋆):

lim
c→0

P (X1 + Z1 > u| P ) = lim
ζ(c)→∞

∫∞
0 G(s+ ℓ̄)N−1g(s+ ℓ̄)h (ζ(c)− s) ds∫∞

0 g(r + ℓ̄)h (ζ(c)− r) dr
. (70)

Write (70) as limζ(c)→∞ E[G(S+ℓ̄)N−1], where the r.v. S has density g(s+ℓ̄)h (ζ(c)− s).
Since h has a thin tail, as ζ(c) → ∞ in the limit (⋆), h (ζ(c)− s1) /h (ζ(c)− s2) → 0

for s1 < s2 by Claim 11, whence E[G(S+ ℓ̄)N−1] → 1, and so P (X1+Z1>u| P ) → 1.
In the limit (⋆), since limP (X1 + Z1 > u| P ) = 1, we have Cov(T,X1| P ) −

Cov(T,X1|{X1+Z1 > u}∩ P ) → 0. Next, {X1+Z1 > u}∩ P = {X1+Z1 > u}∩ C ,
as P ⊂ C , while {X1 + Z1 > u} ∩ C implies {X1 + Z1 > u} ∩ P , as the user
eventually purchases if he clicks through and the first website dominates the outside
option. So Cov(T,X1|{X1 + Z1 > u} ∩ P ) = Cov(T,X1|{X1 + Z1 > u} ∩ C), i.e.

limCov(T,X1| P ) = limCov(T,X1|{X1 + Z1 > u} ∩ C) in the limit (⋆) (71)

Given C , the expected unconditional search time T is the expectation of t(X1,Z1, u, c),
i.e. the mean number of searches when X1=x1, Z1=z1 and the user clicks through:

Cov(T,X1|{X1+Z1 > u}∩ C) = Cov(t(X1,Z1, u, c),X1|{X1+Z1 > u}∩ C). (72)

By equation (69), t(x1, z1, u, c) → t̄(x1) in limit (⋆), which also rises in x . Then
limCov(t(X1,Z1, u, c),X1|{X1+Z1>u}, C)=limCov(t̄(X1),X1|{X1+Z1>u}, C) ≥
0. So by (71)–(72), lim β3 = limCov(T,X1| P )/Var(X1| P ) ≥ 0 in the limit (⋆). !
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G Asymptotic Search Duration
Theorem 10 has implications for the estimation of search duration. Suppose the true
search model has a two-factor structure and a large number of options, but an econo-
metrician ignores the pre-search information and incorrectly specified a stationary
model with a fixed known factor, i.e. X = x̄ . By Theorem 10, the econometrician
will overestimate search duration if G lacks a thin tail. Now we argue that the size of
the error can be arbitrarily large. Denote τ∞ as the search duration in our two factor
model as N → ∞. Let τs be the expected search duration in a stationary search
model, i.e. X = x̄ and N → ∞. By Theorem 10, τ∞ rises in N and converges to τs
from below as N explodes. We argue that the ratio τs/τ∞ can be arbitrarily large as
c vanishes:

Theorem 13 (Asymptotic Search Duration) Assume G lacks a thin tail. Then
τs/τ∞ rises as c falls. As c ↓ 0, τs/τ∞ explodes if and only if H has a thin tail.

As information technology advances, consumers presumably face more options and
smaller search costs. Theorem 13 suggests that, the prediction of a stationary search
model can be increasingly misleading as search frictions vanish. We illustrate Theo-
rem 13 with a numerical example in Figure 14.46 The left panel compares the search
duration in our model and that in a stationary model, assuming H has a thin tail.
As c → 0, both τ∞ and τs explode, but τs increases at a much higher speed. In the
right panel, we plot the ratio τs/τ∞ as a function of c. The red line assumes H has
a thin tail and the blue line does not. As c vanishes, the blue lines converges to a
finite constant while the red line explodes. An implication of this numerical exam-
ple is that, when conducting counterfactual analysis regarding a reduction of search
frictions, the prediction of the model is very sensitive to whether the known factor is
degenerate and whether G and H satisfy the thin tail property.
Proof of Theorem 13: In a stationary model, the survival chance of reaching
stage n is given by H(ζ(c))n and thus the search duration is τs = 1/[1−H(ζ(c))].

Next we derive an expression for τ∞. As N → ∞, Sam will never exercise the
46In both panels we assume X ∼ exp(1). The left panel and the red line in the right panel assume

Z ∼ N(0, 1). The blue line in the right panel assumes Z ∼ exp(1).
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Figure 14: Comparison of search duration under stationary and nonstation-
ary search. (Theorem 13). (Left) As c vanishes, the difference between τs and
τ∞ rises. (Right) As c vanishes, the ratio τs/τ∞ remains finite when H does not
have a thin tail (blue dashed). When H has a thin tail (red), the ratio explodes as c
vanishes.

outside option. Therefore, by (7) the survival chance can be rewritten as

σn = EXn

[(
δ(Xn, c)

1−G(Xn)

)n]
= EXn

[(∫∞
Xn

H (Xn + ζ(c)− x) g(x)dx

1−G(Xn)

)n]

where the expectation is taken over the realization of the order statistic Xn. As
N → ∞, given n, Xn → ∞ in probability. Hence

lim
N→∞

σn = lim
xn→∞

(∫∞
xn

H (xn + ζ(c)− x) g(x)dx

1−G(xn)

)n

= lim
xn→∞

(∫∞
0 H (ζ(c)− y) g(y + xn)dy

1−G(xn)

)n

=

(∫ ∞

0

H (ζ(c)− y) e−yℓdy

)n

where the second line changes variable y = x −xn and the last equation uses Claim 10
and 11 and ℓ ≡ limx→G−1(1) g(x )/[1−G(x )]. Thus, as N → ∞, σn = P (Z < ζ(c)−Y )n

where Y ∼ exp(ℓ). Since τ∞ = Σ∞
n=1σn,

τ∞ =
1

1− P (Z < ζ(c)− Y )
=

1

E[1−H(ζ(c)− Y )]
. (73)

Hence the ratio τs/τ∞ = 1 if G has a thin tail and τs/τ∞ > 1 otherwise.
Suppose G does not have thin tail. By τs = 1/[1−H(ζ(c))] and (73),

τs
τ∞

=
E[1−H(ζ(c)− Y )]

1−H(ζ(c))
.
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This ratio falls in c, provided that 1−H is log-concave. As c falls to 0, ζ(c) explodes.
By l’Hopital’s rule, the limit of the ratio is given by

lim
c→0

τs
τ∞

= lim
ζ→∞

E[h(ζ − Y )]

h(ζ)
.

If H has a thin tail, then this limit explodes, otherwise it is a positive constant. !
Consider the limit when the number of options is large, i.e. N → ∞. We ask

what happens when search frictions is vanishing small.

Proposition 2 If G has a thin tail and H lacks a thin tail, then τc converges to a
positive limit as c → 0, otherwise τc → 0.

Proof: Suppose the distribution G has thin tail, then τ → 1/[1 − H(ζ(c))] as
N → ∞. The total expected search cost is τc. Consider the limit as search friction
vanishes c → 0. At the limit τ → ∞ because ζ(c) → ∞. Apply the L’Hospital rule
to derive the limit of τc:

lim
c→0

(τc) = lim
c→0

c

1−H(ζ(c))
= lim

c→0

1−H(ζ(c))

h(ζ(c))
.

The right side is positive and it vanishes at the limit if and only if H has a thin tail.
If G lacks a thin tail, then by (73),

lim
c→0

(τc) = lim
c→0

c

E[1−H(ζ(c)− Y )]
= lim

c→0

1−H(ζ(c))

E[h(ζ(c)− Y )]
.

If H is log-concave, then the right side vanishes as ζ → ∞. !
These results are sensitive to the order at which the limits are taken. If we take

c → 0 first, then the search duration is always τ = N and the total search cost is
Nc → 0, for any choice of N .
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H Calibration of the Example in Figure 6
We now explain the example in Figure 6. We assume Gaussian known and hidden
factors X ∼ N(µx, σ2

x) and Z ∼ N(µz, σ2
z). We normalize µz = 0. We normalize σz

to 1 by scaling c, u and X and normalize µx to 0 by subtracting its value from u.
The remaining parameters to calibrate are (u, c, σx, N). We calibrate the model to

match the purchase chance, search duration, recall chance and the size of the consid-
eration set in the online book market studied by De Los Santos et al. (2012). Their
dataset is provided by ComScore and includes detailed online browsing and trans-
action data from various Internet users. Approximately, 38 percent of the users in
their sample realized a transaction in 2002, which leads to transactions from 15 online
bookstores with 7,558 observations. Among the transactions in which a consumer vis-
ited more than one store, 58 percent exhausted all bookstores in their consideration
set and 38 percent recalled a previously visited store. In the sample, the fraction of
consumers that are aware of one, two, three and four bookstores are 0.35, 0.34, 0.23
and 0.08, respectively. When calibrating the parameters, we set N = 1, 2, 3, 4 and
compute the average statistics using the same weights.

We use a Monte Carlo method to compute the average statistics when calibrating
the model. For each set of parameter values, we simulate 1000000 times to compute
the relevant average statistics. Then we look for the value of (u, c, σx) such that the
mean-square difference between the average statistics and the data is minimized. We
report the calibrated parameters in the following table:

Parameter Description Target Value

u Quit payoff Fraction of users realized a product transaction 0.78

c Search cost Fraction of transactions that exhaust all options 0.06

given that two or more stores are explored
σx Standard deviation Fraction of transactions that end with recall 0.44

of X given that two or more stores are explored

Table 4: Parameter values of the calibrated model

Comparing search with and without pre-search information we assume u = 0.78,
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c = 0.06, X ∼ N(0, 0.442), Z ∼ N(0, 1) and N = 5 when there is information. When
there is no pre-search information, we assume X ∼ N(0, 0) and Z ∼ N(0,

√
1 + 0.442)

so that the distribution of the sum X + Z is unchanged. For each set of parameter
values, we use the formula in (7) to compute search duration in our model.
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